An Mr 180,000 protein is an endogenous substrate for the insulin-receptor-associated tyrosine kinase in human placenta.
نویسندگان
چکیده
The beta-subunit of the insulin receptor contains a tyrosine-specific protein kinase. Insulin binding activates this kinase and causes phosphorylation of the beta-subunit of the insulin receptor. It is believed that phosphorylation of other proteins might transmit the insulin signal from the receptor to the cell. In the present study we used a polyclonal anti-phosphotyrosine antibody to detect other proteins that become tyrosine phosphorylated upon insulin stimulation. Glycoproteins from human placenta membranes were enriched by wheat germ agglutinin chromatography and phosphorylation was studied with [gamma-32P]ATP and insulin in vitro. Phosphorylated proteins were immunoprecipitated by antibodies against the insulin receptor and by serum containing the anti-phosphotyrosine antibody. Beside the insulin-stimulated phosphorylation of the 95 kDa beta-subunit of the insulin receptor, an insulin-stimulated phosphorylation of a 180 kDa protein was found. The phosphorylation of both proteins occurred only on tyrosine residues. Insulin increased 32P incorporation into the 180 kDa band 2.7-fold (S.E.M. +/- 0.3, n = 5). The 180 kDa protein was not precipitated by antibodies against the insulin receptor. H.p.l.c. chromatograms of tryptic fragments of the phosphorylated 180 kDa protein and of the beta-subunit of the insulin receptor revealed different patterns for both proteins. Insulin-stimulated phosphorylation of the 180 kDa protein was also detectable in unfractionated detergent-solubilized membranes. The phosphorylation of the 180 kDa protein was stimulated by insulin with the same dose-response curve as the phosphorylation of the beta-subunit, suggesting that this protein might be another endogenous substrate of the insulin receptor kinase.
منابع مشابه
An endogenous substrate for the insulin receptor-associated tyrosine kinase.
Insulin binding to its receptor stimulates a tyrosine-specific protein kinase. This enzyme phosphorylates the insulin receptor, as well as a variety of exogenous substrates in vitro. In the present studies, we have identified an endogenous substrate for the insulin receptor-associated kinase. We studied insulin-stimulated protein phosphorylation in partially purified insulin receptor preparatio...
متن کاملModulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase.
Increased serine phosphorylation of insulin receptor substrate-1 (IRS-1) has been observed in several systems to correlate with a decreased ability of the insulin receptor to tyrosine-phosphorylate this endogenous substrate and to inhibit its subsequent association with phosphatidylinositol 3-kinase. In the present studies we have examined the potential role of the mitogen-activated protein (MA...
متن کاملPolylysine specifically activates the insulin-dependent insulin receptor protein kinase.
We have extended these observations to examine the role of polylysine on the divalent metal ion requirement for ligand-stimulated protein kinase activity and the transmembrane signaling mechanism of both the human placenta insulin and insulin-like growth factor 1 (IGF-1) receptors. Polylysine (0.2-1 microM) was found to activate maximally the alpha 2 beta 2 heterotetrameric insulin receptor aut...
متن کاملEvidence that the insulin receptor-associated protein kinase acts as a phosphatidylinositol kinase.
Insulin receptor preparations from human placenta at various states of purity were shown to catalyze insulin-stimulated phosphate incorporation from [gamma-32P]ATP into endogenous (membrane) and exogenous phosphatidylinositol. Our data suggest that the insulin receptor associated protein (tyrosine) kinase can act as a phosphatidylinositol kinase, and that this mechanism may be of physiological ...
متن کاملInsulin-mimetic anti-insulin receptor monoclonal antibodies stimulate receptor kinase activity in intact cells.
In the present studies, nine different monoclonal antibodies to the extracellular domain of the insulin receptor were tested in three different cell types for their ability to stimulate the intrinsic tyrosine kinase activity of the receptor. Previous studies had suggested that several of these monoclonal antibodies stimulate biological responses without stimulating the intrinsic tyrosine kinase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 243 3 شماره
صفحات -
تاریخ انتشار 1987